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Accounting for Label Errors When Training a
Convolutional Neural Network to Estimate Sea Ice
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Abstract—Convolutional neural networks (CNNs) are being in-
creasingly investigated as a means to extract sea ice concentration
from synthetic aperture radar (SAR) in an automated manner. This
is often done using ice charts as training data. However, in these
charts, an ice concentration label is given to a large region, which
may not have a spatially uniform sea ice concentration distribution
at the prediction scale of the CNN. This leads to representativity
errors, which can be more pronounced at intermediate sea ice
concentrations. In this study, we first investigate ways to perturb
the ice chart labels to obtain improved predictions to account for
the label uncertainty for intermediate ice concentrations. We then
propose a method to augment the ice chart data by rescaling the
information in the SAR imagery. The method is found to lead to
improved accuracy in comparison to using the ice chart labels
alone, with accuracy improving from 0.919 to 0.966. The sea ice
concentration maps with the augmented labels also have much
finer detail than the other approaches evaluated. These details are
visually in agreement with expected sea ice concentration from the
SAR data.

Index Terms—Convolutional neural network (CNN), ice
concentration, synthetic aperture radar (SAR) data.

I. INTRODUCTION

S EA ice concentration is defined as the fraction of a given
portion of the ocean surface that is covered by sea ice. It is

considered as an essential climate variable by the World Mete-
orological Organization due to the role it plays in climate and
in moderating the heat and momentum transfer at the ocean–ice
and ocean–atmosphere interfaces. It is also a key variable in
operational ice monitoring, as it is an impediment for ship traffic
at high latitudes.

The main source of remote sensing data used for opera-
tional ice monitoring is synthetic aperture radar (SAR) imagery.
These data are acquired at low frequencies of the microwave
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spectrum and are, therefore, insensitive to atmospheric moisture.
Due to the complexity of the interaction of the SAR signal and
the sea ice or ice/snow/ocean system, and the imaging geome-
try, there is not a straightforward mapping between the signal
received by the sensor (backscatter) and the surface properties.

Automated algorithms to estimate sea ice concentration from
these images are still under development. At present, SAR
images are typically analyzed manually by trained ice analysts
employed at national ice services. The products of these analy-
ses, called “ice charts,” contain labeled regions, called polygons,
that are considered to have spatially homogeneous ice cover. The
labels contain the overall concentration of each polygon, as well
as the proportion of area covered by up to three main ice types
and information of floe size distribution. For practical reasons,
polygons are often large compared to the spatial resolution of
the SAR data. Common errors in ice charts include operator
biases, representativity errors, and uncertainty in setting ice
concentration labels for intermediate ice concentrations [1], [2].

Due in part to the manual labor required to generate ice
charts, increasing demand for these analyses, and increasing
data volumes, there is interest in investigating ways to extract
information on the ice cover from SAR data in an automated
manner. To this end, several studies have proposed either feature
engineering or feature learning approaches [2]–[4]. Here, we
focus on feature learning, as it was found to be more suitable
in a direct comparison study [5]. Specifically, we focus on
learning ice concentration information, although one can also
learn information regarding the stage of development of the ice
(often referred to as ice type) [6]–[8].

To train convolutional neural networks (CNNs) to predict sea
ice concentration from SAR imagery, several previous studies
have used ice charts to provide the ice concentration labels [5],
[9]. However, as pointed out above, the ice chart labels have
errors. In this study, we are mainly concerned with representativ-
ity errors. For example, the role of the ice analyst is not to provide
polygons that capture all the spatial details of the ice cover.
Regions of high ice concentration with some leads (narrow
openings) could be assigned a label of 90% ice concentration.
At a smaller scale, this label would not be accurate because the
pixels in the polygon that are open water are given the same
label as pixels in the polygon that are ice.

To address these issues, one approach is to train the network
on only “pure” ice and water polygons (those that have only one
ice type or are 100% open water [10], and let the CNN infer the
information on intermediate ice concentrations. However, given
the limited number of pure polygons, to train a CNN effectively
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in this manner, one would require a very large database of
images. In addition, pure ice polygons could have representativ-
ity errors. Giving an automated method, these samples to learn
ice concentration without taking this into account could lead
to a systematic bias in partial ice concentrations. For example,
if the “pure” ice polygons typically have open water within
them, the predicted ice concentration could be biased high in
marginal ice zones. Another approach is to redraw polygons,
although this would be labor intensive, and it may be diffi-
cult to achieve polygons that fully represent the details in the
ice cover.

In contrast to using only pure ice and water or redrawing
polygons, one can use all of the ice chart polygons in training.
In this approach, the CNN is tasked with downscaling the
coarse-grained ice chart polygons to provide smaller scale ice
concentration information. To reduce the impact of representa-
tivity errors, one can use the ice concentration directly in a mean
absolute error (MAE) loss function, which is less sensitive to
outliers than a mean-squared error (MSE) loss function [11].
Alternatively, one can threshold the ice concentration from the
ice charts to zeros and ones and train a CNN to predict a prob-
ability of ice using a binary cross-entropy (BCE) loss function.
Recently, it has been shown that using ice concentration values
directly in the BCE loss function, instead of first thresholding,
yields improved model predictions [9]. This was attributed to
the fact that in such an approach, the label is interpreted as a
“soft probability.”

In this article, we first build directly on earlier work [9] in
which passive microwave (PM) data are used as input to the CNN
with the SAR data and explore various ways to accommodate
the representativity error associated with the ice chart labels.
While the PM data have coarser spatial resolution than SAR
(e.g., 5 km–55 km versus 100 m), PM radiometers acquire data
over a range of frequencies. Given that the response of the PM
signal to various conditions (thin ice, wind roughening, and
atmospheric moisture) is frequency dependent [12]–[14], this
can enable the PM data to assist the CNN in differentiating
between variability in SAR backscatter and/or PM brightness
temperatures due to these conditions and variability due to ice
concentration. We then propose a novel approach to augment the
ice chart labels that is able to account for representativity error
and compare this approach to one [2] proposed in an earlier
study. We show that using this label augmentation, a significant
amount of detail visible in the SAR data can be retained in
the ice concentration predictions. The method shows strong
generalization capability and is robust to wind roughening of the
ocean and other features in the SAR data that are not related to
ice concentration.

The rest of this article is organized as follows. We present the
database briefly in Section II (an earlier version is discussed
in [9]). The methodology is presented in Section III. Sec-
tion IV presents the experimental setup. Results are presented in
Section V. Finally, Section VI concludes this article.

II. DATA

The dataset used for this study is the ASIP sea ice dataset—
Version 2 [15], produced by the Danish Meteorological In-
stitute (DMI), the Technical University of Denmark, and the
Nansen Environmental Remote Sensing Center (NERSC). A

corrigendum of this dataset is used, in which nine erroneous
scenes were removed. The dataset consists of 452 Sentinel-1
SAR scenes acquired between March 14, 2018 and May 25,
2019 with coregistered corresponding data from Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) and ice charts from
the Greenland Ice Service of the DMI. The SAR scenes cover
most of the waters surrounding Greenland. For each SAR image,
a mosaic of the AMSR2 swath data that gives priority to the
swaths acquired closest in time (but before) the SAR acquisition
is used. A time window of up to 7 h is considered in selecting the
AMSR2 swaths that overlap the SAR imager. The reason why the
AMSR2 data are chosen to be before the SAR image acquisition
is to “simulate” the operational environment at an ice service.
The Sentinel-1 SAR images are C-band dual polarized with a
resolution of 93× 87 m (range× azimuth) and a pixel spacing of
40 × 40 m. The AMSR2 data consist of brightness temperatures
at seven different frequencies, each with a horizontal and vertical
polarization. The instrument field of view for the AMSR2 ranges
from 35 × 62 km for the lower frequency channels to 3 × 5 km
for the higher frequency channels. The AMSR-2 data in the
dataset are resampled onto the coordinates of every 50 × 50
SAR pixels (2 × 2 km).

Sentinel-1 SAR scenes are corrupted by severe banding or
scalloping noise in both the range and azimuth directions. These
noise patterns can lead to significant artifacts when geophysical
information is derived from the imagery, and it is, therefore,
desirable to correct this noise before using the images in au-
tomated algorithms. In this study, we use the NERSC noise-
corrected data [16], [17] included in the dataset. Additionally,
both the SAR and AMSR2 data are normalized before input
to the CNN. We normalize the data; as suggested in the ASIP
manual [18], the SAR values given asσo in decibel were mapped
from the approximate range [−30: +10] to the approximate range
[−1: +1] by adding 10 and then dividing by 20. To normalize the
AMSR2 data, for each brightness temperature value, the mean
(≈173.58 K) across all channels was subtracted and then divided
by the standard deviation (≈52.68 K) across all channels.

For training, a sliding-window approach was used to extract
patches from the SAR scenes. A single patch consists of a 300 ×
300 × 2 SAR data array, which is a dual-channel (both HH and
HV) 300× 300 (12 km× 12 km) image, along with a 6× 6× 14
since each AMSR2 pixel is resampled to correspond to 50 SAR
pixels. The AMSR2 data consisted of 14 different channels
comprising seven frequencies with two polarizations each. For
each patch, a corresponding 300 × 300 sea ice chart label array
is extracted from the dataset. In training, the AMSR2 data and
the SAR data were the inputs to the model, and the desired
model output is the prediction for the sea ice chart label. In the
training set, patches were not overlapped. However, in the test
set, patches were overlapped by 50 pixels on each side to avoid
evaluating the models on predictions produced using padded
values, as prescribed in [18]. A 50-pixel edge on each side was
discarded from the 300 × 300 predictions during evaluation.

III. METHODOLOGY

A. Training on Ice Chart Labels Directly

Learning sea ice concentration or ice/water information from
SAR imagery can be viewed as either a regression over the sea
ice concentration values given in the sea ice charts or an ice/water
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TABLE I
LABEL PERTURBATION METHODS

Fig. 1. Probability of the label being set to one for methods, Perturbs A, B,
and C, for a given ice concentration label.

classification task. For the latter approach, when a CNN is used,
normally the last layer before the loss function is a sigmoid
function. This restricts the output to be between 0 and 1, which
can be interpreted as an uncalibrated probability, p. This p value
is then used in a BCE loss function, where the “true states” are 0s
and 1s, obtained by applying a threshold to the ice chart data. In
an earlier study [9], improved results were obtained when the sea
ice concentration values were used directly as soft probabilities
in the BCE loss function, instead of thresholding the ice chart
data. We consider this approach as an interpretation of the ice
chart label as a probability of the pixel being ice. On this basis,
we investigate three approaches to express uncertainty in the ice
chart labels.

In method Binary Perturb A, for each pixel in the sea ice chart,
the label from the ice chart (a number between 0 and 1) is used
as the probability p in a single Bernoulli trial. When training
the CNN, the label at that pixel is replaced with either a 0 or 1,
where the 0 or 1 is drawn from a Bernoulli distribution with
probability p. With regard to training the CNN, these random
trials are repeated every single epoch.

Alternatively, the probability of a label being set to one does
not have to map linearly to p. Two additional ways of obtaining
binary labels from sea ice concentration values are explored.
In Binary Perturb B and Binary Perturb C, the probability, p,
is related to the ice concentration labels in a different manner
(see Table I and Fig. 1). For Binary Perturb B, the probability
of setting the label to 1 is higher for lower ice concentrations
and lower for high ice concentrations, as compared to Binary
Perturb A, whereas the opposite relationship is applied for
Binary Perturb C.

We compare the label perturbation methods to using the ice
concentration labels more directly in either an MSE or MAE
loss function. Due to the representativity error, it is expected
that the CNN will interpret many samples as mislabeled, which

would correspond to outliers in the loss function. For example,
a consolidated ice region with a lead or two (opening in the ice
cover) could be given a label of 0.9. If the CNN interprets the
open water pixels correctly, these would not match the label of
0.9. These pixels would contribute significantly to the loss if the
CNN predicts a zero for these pixels, as it should. Hence, we ex-
pect better performance for the MAE loss function as compared
to the MSE, as has been found in earlier studies [2], [19].

B. Accounting for Representativity Error I: Mean-Split
Loss Function

Mean-split loss was introduced in [2] as a more intuitive way
of training a CNN to predict ice concentration using polygon
labels from ice charts. Since the polygons labels within patches
indicate an average ice concentration over an area, the loss
function can be configured to calculate the difference between
the mean prediction in the area occupied by a polygon within
the patch and the polygon label

LMS(z, y) =
∑

i∈I

Mi

M
L(i, ȳi). (1)

Given the CNN predictions y and corresponding ice chart
concentrations z over a single patch, for each concentration
class in the ice concentration labels I = [0, 0.05, 0.1,...,1],
the distance function L can be used to measure the difference
between the concentration label for an area within a patch and
the mean prediction over the area occupied by a polygon within
the patch. The loss calculated by L is weighted by the number
of pixels in the concentration class over the total number of
pixels. That is to say, Mi is the number of pixels in a patch with
concentration label i, while M is the total number of pixels in
the patch. The distance function L could simply be MAE, where
i is the ice concentration category and ȳi is the mean of the CNN
predictions for the given category.

A couple of modifications were made to this function relative
to that used in [2]. During training, the loss is computed over a
batch of many patches instead of a single patch. This was done so
that the true mean concentration over the pixels labeled a certain
concentration would be closer to the label given. Since polygon
labels cover a large area and ice cover within a given polygon is
not completely homogeneous, the true mean ice concentration
for a patch within a polygon may differ quite a bit from the
ice concentration label given to the polygon. By considering
mean-split loss over many patches instead of a single patch,
there will be more pixels per concentration class, and thus, the
ice concentration label better approximates the true mean ice
concentration over these pixels. In addition, it was observed that
the predictions of a model trained using this loss function were
often much outside of the range [0, 1]. This was a result of the
fact that the loss function is only interested in mean predictions
over an area, rather than per-pixel predictions. To reduce the
occurrence of out of range values, the loss function was modified
to punish predictions outside of the range [0, 1]

LMS(z, y)=
∑

i∈I

Mi

M
L(i, ȳi)+

∑
x∈A (x− 1) +

∑
x∈B (−x)

αM
.

(2)
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In (2), A is the set of all predictions above 1 and B is the
set of all predictions below 0. To modify how aggressively the
predictions outside of [0, 1] are punished, α values ranging
from 0.5 to 8 were tested. A value of α = 4 was found to work
well in keeping predictions mostly within the range of [0, 1]
while scoring relatively well in the R2 measure discussed later
in Section V.

C. Accounting for Representativity Error II: Label
Augmentation Using SAR Data

The Binary Perturb and Mean-Split approaches are not di-
rectly intended to overcome the representativity error. Here, we
present a method to overcome the error and guide our network
toward interpreting the smaller scale features in the SAR images,
using the SAR data itself. The key assumption is that in a single
patch (300 × 300 pixels or 12 km × 12 km) containing both
ice and water, ice should generally be associated with higher
levels of backscatter as compared to water. This assumption
allows us to exploit the SAR data to augment information present
in the ice chart labels provided by the DMI ice analysts. We
recognize that this assumption will not be valid in all situations.
For example, when new ice is present in wind-roughened water,
the ice may appear dark, while the water is bright. Additionally,
certain atmospheric disturbances (wind or rain) can give rise to
strong patterns in SAR imagery that could be misinterpreted as
ice information [20]. However, given the strong generalization
capability of a CNN, we anticipate that the network will not
fixate on these situations. We recognize that this is a shortcoming
of the approach and propose to investigate this further through
specific approaches for out-of-distribution samples [21]. At this
time, since these situations are most pronounced in HH imagery,
we carried out experiments using HH and HV separately to
augment the labels, in addition to one where they are used
together.

In the proposed Augmented Labels method, for the pixels
given an ice concentration label of c by the ice analysts, the
mean of the augmented labels across these pixels will be ap-
proximately equal to c. Higher ice concentration labels will be
given to pixels corresponding to brighter pixels in the SAR
data, while lower ice concentration labels will be given to
pixels corresponding to darker pixels in the SAR data. In the
Augmented Labels method, first, 10× 10 average pooling is per-
formed across both channels of the SAR data to reduce speckle
noise. This is followed by bilinear upsampling to convert the
dimensions of each SAR image patch back to 300 × 300 pixels
(12 km × 12 km). The two images from the two channels are
then normalized to have a mean of 0 and a standard deviation
of 1, so they can be added together to get a single image patch
s. For each concentration class with the exception of 0, 0.95,
and 1 (open water, fully compacted but not landfast ice, and
landfast ice, respectively), the mean and standard deviation for
the corresponding SAR pixels in s given that label are calculated.
Then, the standard deviation is multiplied by some uniformity
factor. A larger uniformity factor reduces the extent to which
the augmented label differs from the original one. Using the
modified standard deviation (after multiplication by the unifor-
mity factor) and the mean, a cumulative distribution function
(CDF) of the standard normal distribution is evaluated at the

Fig. 2. Demonstration of the SAR augmented labels. Top row: Patch from
an interpolated sea ice chart in a 300 × 300 image demonstrating a polygon
label, with white representing a label of 0.3 and black representing a label of
0. Second row: HH (left) and HV (right) SAR images corresponding to the
patch. Third row: The HH (left) and HV (right) images after the average pooling
and bilinear upsampling. Bottom row: Three different examples of augmented
labels constructed using uniformity factors of 0.1 (left), 1 (middle), and 10
(right).

value for each SAR pixel in s given the concentration class
label being considered. The CDF values will be between 0 and
1 and are centered at 0.5. The CDF quantifies the probability
that a sample pixel drawn from the patch that has the given
ice concentration label has a backscatter less than or equal to
the SAR pixel value from s. If the SAR pixel value has a 50%
chance of being greater than a sample pixel value with the same
label, then the label for the pixel should be the label given by the
ice analyst. If the SAR pixel value has a greater than 50% chance
of being greater than a sample pixel value with the same label,
then the label for the pixel should be higher than the label given
by the ice analyst. This is done by subtracting 0.5 and adding the
polygon label to each of the CDF values. Finally, these values
are clipped to be between 0 and 1 and become the augmented
labels. The Augmented Labels approach is applied separately
for each concentration class. If there are not enough pixels with
a given concentration label, arbitrarily, if there are less than
10 pixels with a given concentration label, the labels for those
pixels are not augmented. The Augmented Labels approach was
not applied to labels of 0, 0.95, and 1 since there should be very
little representativity error for these labels, with 0 labels being
open water, 0.95 labels being ice that is fully compacted, but not
landfast, and labels of 1 being landfast ice. A demonstration of
the Augmented Labels approach is shown in Fig. 2.

For all models trained using Augmented Labels, an MAE
loss function was used. Models were initially trained using
Augmented Labels testing uniformity factors of 1, 2, and 3.
As mentioned above, two additional models were trained using
Augmented Labels with a uniformity factor of 1, where the
HH and HV channels of the SAR imagery were each used
separately to augment the labels. We expect the model with HH
augmentation to suffer in conditions with dark ice and light water
that can occur during thin ice/strong winds, whereas the model
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with HV augmentation may suffer from signal to noise issues
due to the high noise levels associated with the HV channel.

D. CNN Model

The CNN architecture used was proposed in [9] with the main
goal being the fusion of both the AMSR2 brightness temperature
data and the SAR data to predict sea ice concentration. Through-
out the convolutional layers of the model, same padding was
used to retain high-resolution features. By using same padding,
through every convolutional layer in the network, the height and
width of the image patch are retained at 300 × 300. The CNN
begins with six 3 × 3 kernel convolutional layers. After the
sixth convolutional layer, four different average pooling layers
were used in parallel, each with a window size equal to the
receptive field corresponding to the dilation rate of the atrous
convolutional layer following the average pooling. This atrous
spatial pyramid pooling [22] was used to capture features in the
SAR image at different scales. The AMSR2 data pass through
bilinear upsampling to match the dimensions of the 300 × 300
SAR data and are concatenated to the output of the four atrous
layers along with the output of the second convolutional layer.
A final single 1 × 1 convolution is applied to the concatenated
data.

The CNN model used was modified from1 (ASPP_model_
extdata_v2 model). Modifications made to this model include
increasing the number of filters in the first and second convolu-
tional layers from 12 to 16, increasing the number of filters in the
third and fourth convolutional layers from 18 to 20, increasing
the number of filters in the fifth and sixth convolutional layers
from 18 to 24, and the addition of another convolutional layer
right before the final 1 × 1 convolutional layer with 16 1 × 1
filters. In addition, a batch normalization layer was added af-
ter the sixth convolutional layer to speed up training, and the
dropout layers were removed as they did not seem to improve
performance, perhaps because of the model being lightweight
with only roughly 58k trainable parameters.

For training, a batch size of 32 was used, along with an Adam
optimizer at an initial learning rate of 0.001. At the beginning
of each epoch, the order of the patches was shuffled. During
training, the learning rate was reduced by a factor of 5 if the
training loss did not decrease from the minimum by at least
0.001 for five consecutive epochs. Convergence was assumed to
have been reached if the learning rate was reduced at least once.
Fifty epochs were enough to guarantee that all of the model
configurations would converge. At this point, validation loss has
plateaued.

IV. EXPERIMENTAL METHOD

A. Test Data

To test the CNNs, 82 of the 452 scenes (≈18%) were randomly
chosen and held out for the test set. Of the remaining 370 scenes,
during training, 10% are randomly chosen to form the cross-
validation set. From the 82 held out scenes, 67 911 patches were
extracted. The ice charts in the 82 scenes consisted of 1182
polygons. For the 13 different ice concentration labels given in

1[Online]. Available: https://github.com/damaha/asip-v2/blob/master/keras/
models.py

TABLE II
POLYGONS AND PIXELS PER LABEL IN THE TEST SET

the dataset, the number of polygons and pixels per label in the
test set is described in Table II.

B. Training Data

It can be seen in Table II that there is a class imbalance in the
test data in that the open water labels (those with labels of 0)
comprise the majority of the test data. A similar imbalance exists
in the training data, with up to ≈73% of training set being open
water. To address this imbalance in training the CNN, 60%
of the patches where all of the pixels were given a label of 0
were randomly chosen and removed from the training set. This
resulted in a roughly 50–50 balance between 0 labels (water) and
the remaining 0.05–1.0 labels (ice). The training set consisted
of 72 242 patches.

C. Visual Interpretation of CNN Predictions

Visual interpretation is a good tool to look for both gross errors
in the predictions that are not captured by metrics and features
that the model may capture well. For the former, spurious ice
concentration (noise) over what should be open water or model
predictions of water over what should be smooth consolidated
ice have been noted problems in earlier related studies [23]. For
the latter, high-resolution features, such as openings in the ice
cover, individual ice floes of a size that can be represented in
the SAR imagery, and details of the ice edge, are all features
we anticipate the CNN should be able to represent in the model
predictions. To visually check the CNN predictions, we inves-
tigated the availability of data from Sentinel-2 within a ±1 day
time period of the SAR image acquisition. This is a wider time
window than is often used, but since we are only doing a visual
comparison, we considered this acceptable. Of the four images
chosen for visualization, only the image acquired on August
26, 2018 had a good selection of clear sky Sentinel-2 data, as
discussed in the following.

V. EVALUATION AND RESULTS

Herein, for the sake of brevity, the various model configu-
rations will be referred to as follows. There were four models
trained on the sea ice chart ice concentration labels directly. The
model trained with the BCE loss function will be referred to as

https://github.com/damaha/asip-v2/blob/master/keras/models.py
https://github.com/damaha/asip-v2/blob/master/keras/models.py
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Fig. 3. Percentage of pixels classified as ice for each ice concentration category for (a) BCE, (b) Perturb C, and (c) SARA-1 (both channels). Dots indicate the
fraction of ice predicted for the ice concentration bin, and bars indicate the standard error.

TABLE III
R2 SCORES FOR ICE CONCENTRATION ESTIMATION FOR THE VARIOUS MODELS

the BCE model, the model trained with the MAE loss function
will be referred to as the MAE model, the model trained with the
MSE loss function will be referred to as the MSE model, and the
model trained with the mean-split loss function will be referred
to as the MS model. For the models trained on binary labels, the
model trained on labels produced through the Perturb A method
will be referred to as the Perturb A model and likewise for Perturb
B and C. Finally, regarding the models trained on the SAR
augmented labels, these will be referred to as SARA-#, where
# represents the uniformity factor used in the augmentation
method. Additionally, the model trained on the labels augmented
with the HV SAR channel alone is referred to as SARA-1 (HV),
and similarly, the model trained on the labels augmented with the
HH SAR channel alone is referred to as SARA-1 (HH). These
models were trained using a uniformity factor of 1, which was
sufficient to illustrate the impact of using only the HH or HV
channel in the SAR augmented label approach.

A. Quantitative Comparison of Models

Our first comparison quantitatively compares the model pre-
dictions with the ice chart labels for the test dataset. Given
the representativity errors, a per-pixel accuracy measure was
avoided because the sea ice charts do not contain useful per pixel
labels. Instead, an R2 measure was adopted. The CNN predic-
tions were thresholded at an ice concentration of 0.5. Predictions
above the threshold were considered ice and predictions below
the threshold were considered water. For each ice concentration
bin in the ice charts, we then add up the total number of pixels
classified as ice and the total number of pixels classified as water.

Fig. 4. Location of the four scenes from the test that are examined in detail.
These scenes were chosen due to the variety of conditions they represent. From
top to bottom are the scenes from August 26, 2018, September 10, 2018, March
22, 2018, and March 14, 2018. Coastline obtained from [Wessel and Smith
shoreline database].

The fraction of pixels classified as ice over the total number
of pixels given a certain ice concentration label should roughly
equal the ice concentration value. For each model, we then have a
relationship between the fractions estimated and the ice concen-
tration bin, from which anR2 value can be determined. Addition-
ally, a mean bias score is included. For each concentration label
i in [0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1], the
bias for the given label i is first calculated as difference between
the sum of all predictions for the given label and the label value.
The mean bias score is the sum of these biases divided by the
total number of ice concentration labels, which is 13. These
scores are given in Table III for each model.

It can be seen that the R2 values are the highest for the
SARA-1 models. As the uniformity factor is increased, and
the impact of the label augmentation is decreased, the R2

scores decrease with SARA-3 and have a lower R2 score than
SARA-1. The model trained using the mean-split loss function
also performed relatively well as this loss function attempts to
overcome the representativity error. The MAE, BCE, MSE and
the Perturb models score within the same neighborhood with
the Perturb B model scoring the highest and the MAE model
scoring the lowest. However, of these six models, the MAE
model visually produces the fewest spurious ice predictions over
open water.

The mean bias scores presented in Table III indicate that the
bias is the lowest for the MSE and Perturb models and slightly
greater in magnitude (more negative) for the SARA-1 models.
This can be understood from looking at Fig. 3, where it can
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Fig. 5. Scene acquired September 10, 2018, 08:18:14 UTC, covering Greenland’s northeast coast. Central latitude and longitude: 77.4◦ N, 15.4◦ W. (a) Sea ice
chart. (b) HH SAR image. (c) HV SAR image. (d) BCE model predictions. (e) MAE model predictions. (f) MSE model predictions. (g) Perturb A model predictions.
(h) Perturb B model predictions. (i) Perturb C model predictions. The orange circle indicates regions where in some cases, spurious ice is retrieved over the open
water.

be seen that there is a larger positive bias for the Perturb C
model than SARA-1 for the open water category, which would
partially compensate for the negative bias associated with the
other ice concentration categories. Similarly, the mean bias score
is positive for the Mean-Split model, which is in agreement with
what we see qualitatively in the results (see Figs. 6 and 7).

To calculate the significance of theR2 score and the mean bias
score, a bootstrapping approach was used, where each sample
consisted of a fixed number of scenes (e.g., 82) chosen from
the test set with replacement. A number of trials (e.g., 10, 30,
and 50) were then carried out, where, for each sample, an R2

value and a mean bias value were calculated. This was repeated
for each model, yielding a set of R2 estimates. It was found
that the results were repeatable, with the set of SARA models
consistently outperforming the others, and with the SARA-1
models having consistently ≈ 0.01 higher R2 scores than the
others.

An alternative approach to compare models was also car-
ried out, which allows an estimate of the scatter of model
predictions within each ice concentration bin. In this ap-
proach, for each scene and for each concentration label i

in [0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1], the
number of pixels predicted by the model as ice is added up to give
a sample ni for concentration bin i. Provided that the number
of pixels in the given concentration bin in the ice chart mi is
nonzero, ni/mi becomes a sample for the proportion of pixels
labeled i that are predicted as ice. Then, for any i, the mean of all
of the samples ni/mi should be equal to i and an R2 score can
be calculated. The standard error is considered for each label i
and is calculated as the standard deviation of the samples ni/mi

divided by the square root of the number of samples, which is
equal to the number of scenes that contain the label i.

The performance of the models was similar using this ap-
proach, with SARA-1 having the highest R2 values over the
widest range of thresholds. In comparing the scatter in model
predictions for the various ice concentration bins, it can be seen
that the scatter is greatest for the 0.05 ice concentration bin for all
models shown (and all models tested). As compared to the BCE
models, incorporating perturbed labels, using Perturb C, can be
seen to improve the estimates for intermediate ice concentration
categories, although the scatter for the individual concentration
bins is similar. When the augmented labels are used, shown in
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Fig. 6. Scene acquired March 14, 2018, 20:27:22 UTC, covering Cape Farewell, Greenland. Central latitude and longitude: 58.6◦ N, 42.7◦ W. (a) Sea ice chart.
(b) HH SAR image. (c) HV SAR image. (d) Perturb A model predictions. (e) Perturb B model predictions. (f) Perturb C model predictions. (g) SARA-1 model
predictions. (h) SARA-3 model predictions. (i) Mean-Split model predictions. Note that Perturb B appears to slightly underpredict the high ice concentrations, but
is able to show detail for low ice concentrations, which is expected based on Fig. 1. Also note that there is significant wind roughening on this date, which is more
visible in the HH image than in the HV image, although the HV backscatter is slightly elevated.

Fig. 3(c), the scatter in the individual ice concentration bins
is reduced (the vertical bars for intermediate ice concentration
bins are smaller), and the bias for the 0.05 concentration bin is
reduced, although the bias for the concentration bins 0.6–0.8 is
slightly higher.

B. Visual Comparison of Model Predictions for SAR Scenes

We now compare methods through visualization of scene-
level predictions. For this purpose, four SAR scenes were chosen
(locations shown in Fig. 4) that represent a variety of ice and open
water conditions. In the visualizations, white is used to represent
land, and black is used to represent masked out areas (areas for
which predictions are not generated). The predictions are shown
as values between 0 and 1. For the models where predictions
could have been outside of the range [0, 1], the predictions were
clipped to be within this range. In Fig. 5, the Perturb A, B,
and C models are compared with the MAE, BCE, and MSE
models. Shown in the orange circles drawn over the BCE, MSE,
and Perturb A, B, and C predictions is some noise over what
should be predicted as open water. This noise seems to result
from a combination of wind roughening in the HH SAR image

and subswath striping in both SAR images, although it is most
pronounced in the HV image. This noise is not present in the
MAE model predictions. The light blue patterns over what is
actually water signifying predictions of ice tend to occur closer
to the ice.

In Fig. 6, the Perturb A, B, and C models are compared as
well as SARA-1, SARA-3, and Mean-Split. The predictions
look fairly similar for the Perturb models. Every Perturb model
prediction seems to show some noise over water closer to the ice
edge, with Perturb C being the least noisy. It can also be seen
that Perturb B is able to capture the low concentration ice, but
underpredicts the magnitude of higher ice concentration, while
Perturb C has the opposite tendencies. This is in agreement with
the relationship shown in Fig. 1. The SARA-1 and SARA-3
predictions are fairly similar to those from the Perturb models
with better resolved spatial features. There is slightly enhanced
ice concentration in SARA-1 toward the edge of the marginal
ice area in the western portion of the image, possibly due to
elevated HV backscatter in this region [see Fig. 6(c)]. The
Mean-Split model appears to overpredict the ice concentration in
the region on the ice chart indicating concentrations in the range
of 0.1–0.7.
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Fig. 7. Scene acquired August 26, 2018, 09:30:44 UTC, covering Greenland’s northeast coast. Central latitude and longitude: 82.3◦ N, 18.7◦ W. All images are
reprojected onto EPSG:32627. (a) Sea ice chart. (b) HH SAR image. (c) HV SAR image. (d) BCE model predictions. (e) MAE model predictions. (f) Perturb C
model predictions. (g) SARA-1 model predictions. (h) SARA-3 model predictions. (i) Mean-Split model predictions. (j) Mosaic of Sentinel 2 imagery (RGB: 665,
560, and 490 nm) acquired on August 26, 2018 ±1 day. The SARA and Mean-Split method are able to pick up the small floes that can be seen in the SAR imagery,
as indicated by the region shown in the red circle.



TAMBER et al.: ACCOUNTING FOR LABEL ERRORS WHEN TRAINING A CNN TO ESTIMATE SEA ICE CONCENTRATION 1511

Fig. 8. Scene acquired March 22, 2018, 08:04:25 UTC, covering Greenland’s central east coast. Central latitude and longitude: 70.1◦ N, 19.7◦ W. (a) Sea ice
chart. (b) HH SAR image. (c) HV SAR image. (d) SARA-1 model predictions. (e) SARA-3 model predictions. (f) MAE model predictions.

In Figs. 7 and 8, the SARA models’ predictions are shown.
Considering Fig. 7, as shown within the red circles, the models
trained on the augmented labels can predict relatively smaller
individual ice floes, with SARA-1 separating the ice floes most
clearly. An RGB mosaic from Sentinel-2 imagery is shown in
Fig. 7(j). If one considers some of the larger individual floes
in the red circle, SARA-1 appears able to better reconstruct
these floes in the manner that they contrast with the underlying
distribution of smaller floes. While SARA-3 and Mean-Split
do show some floe structure as well, for SARA-3, the results
are a little blurry, while for Mean-Split, the ice cover appears
overestimated in some places and floes are hard to distinguish.
The other models fail to identify individual floes clearly in
their predictions. Instead, wherever distinct ice floes are present,
the other models predict ice in the surrounding waters as well,
extending the predicted ice edge. This is perhaps an artifact of
the representativity error in the labels. Considering Fig. 8, the
SARA models place a greater emphasis on features near the ice
edge that may represent eddy activity.

C. Patch Visuals

To further illustrate the methodology, we show patches ex-
tracted from the SAR images along with the augmented labels
and model predictions. One concern when devising the SAR
label augmentation method was that in this method, the CNN
could be extra sensitive to noise from the SAR images, because
this noise would be in the label. Nonetheless, considering the
patch observed in the first column in Fig. 9, although there is
what appears to be wind roughening in the HH SAR image,
this noise does not show in the SARA model predictions.
Similarly with Fig. 7, on the right edge of the scene, there
appears to be wind roughening over an opening in the ice.
Again, the SARA models are resilient to this noise and do
not reflect this noise in the predictions. The SARA-1 model is

also able to capture various small-scale details that can be seen
in the SAR images, correctly inferring them as ice or water,
respectively.

The fact that the BCE, MAE, MSE, and Perturb A, B, and C
models are predicting ice on water surrounding ice is clearer in
the patch visuals in Fig. 9 since a patch represents a zoomed-in
view. The model trained on the augmented labels produces sharp
ice edges in its predictions with the true ice edges being apparent
in the SAR images. The other models have a blurry appearance.
Even when the predictions from these models are thresholded,
these models fail to sharply capture the ice edge while sepa-
rating the ice from the water. Aside from the SARA models,
the MS model is unique in that it does not blur predictions,
avoiding nonzero predictions over water. Predictions from the
MS model are very binary in nature, and it is, therefore, able to
produce good predictions of intermediate ice concentrations at a
fine scale.

VI. CONCLUSION

In this study, we developed a novel method to improve the
representation of fine scale details in CNN predictions of sea
ice concentration from SAR imagery when ice charts are used
to provide the training labels. The method is surprisingly robust
given the wide range of SAR signatures, from smooth ice to
wind roughened regions, and leads to improved predictions of
sea ice concentration, particularly for intermediate ice concen-
trations. Future work will look at the sensitivity of the method
over a wider geographic region that covers a broader range of
ice conditions, in addition to more in-depth comparisons with
ice concentration from PM sensors and optical data. We will
also more rigorously investigate the underlying assumption of
higher backscatter values corresponding to ice by investigating
the ability of our network to identify samples that do not fit
this assumption as out-of-distribution samples. We also plan to
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Fig. 9. Three sets of patches. Each set of two columns represents a patch of 300 × 300 pixels corresponding to 12 × 12 km. The first patch (leftmost columns)
is from a scene acquired on September 10, 2018, from northeast Greenland, the second patch (middle columns) is from a scene acquired on March 30, 2019,
from southwest Greenland, and the third patch (rightmost columns) is from a scene acquired on December 12, 2018, from northwest Greenland. SAR: on the left
is the HH SAR image and on the right is the HV SAR image. Labels: on the left are the SIC labels and on the right are the SAR augmented labels (uniformity
factor = 1). The remaining nine rows are the predictions for nine model configurations. For each prediction, on the left are the predictions between 0 and 1 and on
the right are the predictions after being thresholded at 0.5. Note that the concentration bar on the right does not apply to the SAR images.

address the question of what kind of distribution should be used
for the Augmented Labels approach. In this study, our CDF
was based on a Gaussian distribution for several reasons. For
example, our data are multilooked, and even after this, average
pooling is applied. In addition, this study represents a first

attempt at the Augmented Labels concept; hence, the additional
complexity of a different distribution did not seem warranted.
Finally, the CNN did not experience any difficulty converging
with this assumption, likely because it is fairly simple and is
parameterized by only a mean and a variance. However, we note
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that the K-distribution is often used as a statistical model for
SAR data [24], although perhaps not the same distribution for
all ice types [25]. The impact of this choice on CNN convergence
and model predictions for a range of ice conditions will be
investigated in a future study.
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