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Abstract—Using an existing convolutional neural network
(CNN) framework that uses both synthetic aperture radar (SAR)
data and passive microwave data to learn sea ice concentration
(SIC), we test the inclusion of different passive microwave
channels and also perturbing the labels used in the loss function.
Improved results are found if the low frequency channels from the
passive microwave data are included. We also find perturbing the
labels may be a reasonable approach to improved SIC estimation
in marginal ice zones.

Index Terms—sea ice, synthetic aperture radar. convolutional
neural network

I. INTRODUCTION

Sea ice concentration is considered an essential climate
variable by the World Meteorological Organization (WMO)
due to the key role it plays in climate. The two main
sources of remote sensing data used for operational sea
ice monitoring are passive microwave data and synthetic
aperture radar (SAR) data. Passive microwave data have
relative coarse spatial resolution (between 5 km and 55
km) and are typically used in the Arctic for automated sea
ice concentration retrievals. Imagery from SAR sensors, in
contrast, have relatively fine spatial resolution (≈ 50 m) but
due to the complexity of the radar signal and its interaction
with the ice cover, it is difficult to interpret these images in
an automated manner. At present, SAR images are typically
analysed manually by trained ice analysts employed at
national ice services. The products of these analyses, called
‘ice charts’ contain labelled regions, called polygons, that
are considered to have spatially homogeneous ice cover. The
labels contain the overall concentration of each polygon,
in addition to other information on the ice cover. Although
they contain errors due to operator biases, representativity
errors, and uncertainty in setting ice concentration labels for
intermediate ice concentrations [3] [1], they are still often
considered one of the more accurate sources of information
on sea ice concentration. Efforts to automate extraction of
sea ice concentration from SAR have used these ice charts to
provide labels in both feature engineering and feature learning
approaches [5]. We focus on feature learning, specifically the

use of CNNs.

Previous work using SAR data as input to a CNN has
demonstrated that while this is a powerful approach toward
automated use of this data, there are some typical problems
that arise. For example, smooth ice, that appears dark in
SAR imagery, can often be misinterpreted as open water. In
a similar fashion, open water can often have spurious ice
concentration retrievals due to wind roughening that is visible
in the SAR image. To mitigate these issues one approach
is to bring in another type of data into the CNN. Here we
build on what has been done in a previous study [4] that
uses passive microwave data with SAR to train a CNN.
We also investigate an alternative interpretation of the ice
concentration from the ice chart as labels for the CNN.

II. METHODOLOGY

The input data to the CNN consist of patches of 300 ×
300 pixels extracted from both HH and HV Sentinel-1 SAR
imagery and 14 channels of data from the AMSR-E sensor.
The SAR imagery are extra-wide (EW) swath mode images
with a spatial resolution of 40 m × 40 m. The AMSR-E data
consist of brightness temperatures at frequencies ranging from
6.9 GHz to 89 GHz at both horizontal and vertical polarization.
We use the CNN structure from [4] that first reads in the SAR
data, applies a spatial pyramid pooling module, followed by
atrous convolution at four different dilatation rates, with a 1
× 1 convolution at the end to bring in the AMSR-E data. A
full description of the input data and the CNN can be found
in [4]. To train a CNN using ice concentration (here from ice
charts) as labels, one option is to use the labels directly in
the loss function with either a mean squared error, or mean
absolute error, loss function. In this case, the model provides
a prediction of ice concentration [2]. Alternatively one can
threshold the ice concentration from the ice charts to zeros
and ones and train a CNN to predict a probability of ice
using a binary cross entropy (BCE) loss function. Recently,
it has been shown that using ice concentration values directly
in the BCE loss function, instead of first thresholding, yields

978-1-6654-0335-1/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 1
9t

h 
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n 

A
nt

en
na

 T
ec

hn
ol

og
y 

an
d 

A
pp

lie
d 

El
ec

tro
m

ag
ne

tic
s (

A
N

TE
M

) |
 9

78
-1

-6
65

4-
03

35
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

A
N

TE
M

51
10

7.
20

21
.9

51
88

75

Authorized licensed use limited to: University of Waterloo. Downloaded on January 30,2025 at 16:24:02 UTC from IEEE Xplore.  Restrictions apply. 



improved model predictions [4]. In this brief paper we expand
on this by interpreting the ice chart labels in a more direct
probabilistic sense, and investigate the impact of this on the
CNN model predictions. In our method, for each pixel in the
sea ice chart, the label (a number between 0 and 1) is used as
the probability p in a single Bernoulli trial. Then the label at
that pixel will be randomly replaced with either a one or zero
with probability p and this value of one or zero will be used
in the BCE loss function. The method is only applied to labels
that do not represent either open water or consolidated ice, to
reflect the uncertainty associated with labels for intermediate
ice concentrations. With regards to training the CNN, these
random trials are repeated every single epoch. Before testing
the label perturbation approach we will also show some results
regarding the use of the AMSR-E data.

III. RESULTS

Our first set of results compare three different implemen-
tations of the AMSR-E data. For the first one the idea was
to reduce smearing that could result from including the low
frequency channels, which have coarse spatial resolution.
Results from including only the last four channels of AMSR-
E data (36.5 GHz H/V and 89 GHz H/V) can be seen in Fig
1 (middle row). It was found this lead to noisy predictions.
This noise is significantly reduced when the 89 GHz channels
are omitted (Fig 1, bottom row). Hence, the noise is likely
from the CNN generalizing a pattern in the high frequency
AMSR-E channels that could be present due to atmospheric
moisture. We do note a possible slight blurring of the ice edge,
with the low frequency channels included, although this could
be mitigated by choosing a different probability threshold.
Next, we investigated the method to perturb the ice chart
labels. Our preliminary results (Fig 2) indicate this method is
slightly better able to extract information in the marginal ice
zone. Model predictions are less impacted over open water
and consolidated ice, as expected.

IV. CONCLUSIONS

Results shown here and further experiments carried out
support the use of including the low frequency AMSR-E
channels in tandem with SAR data in a CNN for estimation
of sea ice concentration. Preliminary results perturbing ice
chart labels shows it a reasonable approach. Overall, we find
the ASIP database1 a useful tool to investigate this problem
for both academic problems in addition to being relevant for
operational ice services.
1 https://data.dtu.dk/articles/dataset/AI4Arctic ASIP Sea Ice Dataset -

version2
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Fig. 1. CNN model predictions for a given patch, showing the impact of
including the various AMSR-E channels. Top row; left, HH image patch;
right, HV image patch. Rows 2 and 3, left, CNN predictions, right CNN
predictions thresholded at 0.5. Middle row, predictions when only the 36.5
GHz and 89 GHz AMSR-E channels are used. Bottom row, model predictions
including all AMSR-E channels except for 89 GHz (results are similar if 89
GHz is included).
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Fig. 2. CNN model predictions for a SAR scene acquired on March 22,
2018, covering Greenland’s central east coast. Central latitude and longitude:
70.1° N, 19.7° W. a) HH image patch, b) HV image patch. Bottom row, CNN
predictions when BCE is used without (c) and with (d) perturbed labels.
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