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Abstract. Large-scale LLMs have driven listwise reranking research,
achieving impressive state-of-the-art results. However, their massive
parameter counts and limited context sizes limit efficient reranking. To
address this, we present LiT5, a family of efficient listwise rerankers based
on the T5 model. Our approach demonstrates competitive reranking
effectiveness compared to listwise LLM rerankers, with far fewer param-
eters, greater computational efficiency, and the ability to rerank more
passages in a single shot. Our models consistently deliver strong effec-
tiveness with as few as 220M parameters, offering a scalable solution for
listwise reranking. Code and scripts for reproducibility are available at
https://github.com/castorini/rank_llm.
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1 Introduction

Listwise reranking using LLMs has seen success in recent work and has attained
state-of-the-art results for reranking [11,14,15,18]. These approaches leverage
the extensive capabilities of LLMs to take a query and a list of passages and rank
the passages in terms of relevance to the query, considering all of the passages
together. However, these listwise rerankers rely on large LLMs with billions of
parameters and limited context-window sizes. This reliance on large-scale models
introduces challenges in terms of computational demands.

This paper introduces LiT5, a family of models that leverages the Fusion-
in-Decoder (FiD) architecture [7] to build efficient listwise rerankers based on
T5 [17]. To our knowledge, we are the first to show that it is possible to distill
large LLM listwise rerankers into much smaller models while maintaining com-
petitive effectiveness. Our approach, based on encoder–decoder models, is both
effective and computationally efficient, allowing for the first time, the listwise
reranking of 100 passages in a single shot, surpassing the 20-passage limit from
previous work due to context-window limitations.
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2 Background and Related Work

The Fusion-in-Decoder (FiD) [7] model, based on T5, has proven highly effective
in knowledge-intensive tasks like open-domain question answering [8]. FiD mod-
ifies the T5 encoder–decoder architecture to take multiple passages, encoding
each one individually, then performs attention over the concatenated encoded
passages in the decoder, with both encoder and decoder computations scaling
linearly with the number of passages [9]. While the encoder processes each pas-
sage separately, the decoder synthesizes information across passages to produce
an answer. In contrast, decoder-only LLMs scale quadratically in computation
when handling multiple passages in a prompt, unless additional methods are
used to manage this complexity [19].

RankGPT [18] demonstrated that GPT3.5 and GPT4 are strong listwise
rerankers, with RankGPT4 achieving state-of-the-art results. The work also
showed that RankGPT’s reranking effectiveness can be distilled into smaller
cross-encoders, though with room for improvement. Later work distilled the effec-
tiveness of RankGPT into smaller LLMs [14,15]. This distillation used instruc-
tion fine-tuning to train student models to replicate the teacher’s rankings. In
our LiT5 method, we distill ranking reorderings from a RankZephyr teacher
model into smaller encoder–decoder models for efficient listwise reranking.

3 Methods

We build on previous work [14,15] that uses RankGPT as a teacher model to
distill ranking orderings into listwise student reranking models. One such model
is RankZephyr [15], which bridges the effectiveness gap with GPT4 and in some
cases even surpasses the proprietary teacher. In LiT5, we use RankZephyr as a
teacher model for distillation, avoiding the API costs of GPT4 and leveraging a
more transparent, open-source model.

Fig. 1. LiT5 architecture. Each query–passage pair is encoded separately. Then, the
decoder reads over the concatenated representations to generate a ranking such as: “2
1 . . . N . . . ”.

Following the FiD architecture as shown in Fig. 1, the model encoder encodes
each passage individually alongside the query. For each query–passage pair, the
input prompt begins with Search Query:, followed by the query, then Passage:
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with a unique numerical identifier (e.g., [1,2]), and finally the passage text. The
prompt ends with Relevance Ranking: to prompt the model to generate a rank-
ing. The decoder then reads over the concatenated encoded token representations
of all passages to produce an ordering of passage identifiers based on relevance,
from most to least relevant, for example, “3 1 2 . . . ”.

By fine-tuning LiT5 to produce the same orderings from RankZephyr for up
to 100 passages, we train LiT5 to reorder up to 100 passages in a single shot.
This eliminates the need for the sliding window strategy used in RankGPT,
RankVicuna, and RankZephyr, which were limited to smaller context windows
of 20 passages due to context-window constraints.

Model Training. To train LiT5, we randomly sampled 20K queries from the
MS MARCO v1 passage ranking dataset. For each query, we retrieved 100 pas-
sages from both the MS MARCO v1 and v2 passage corpora. For the MS MARCO
v1 corpus, we used OpenAI’s ADA2 model due to its strong retrieval effective-
ness. For MS MARCO v2, we used BM25 with RM3 for simplicity, avoiding the
computational overhead of encoding the larger corpus. The top 100 retrieved
passages were reranked using RankZephyr’s sliding window approach, which
includes three passes to optimize ranking effectiveness. LiT5 was trained to pro-
duce the same orderings as its RankZephyr teacher. LiT5 models were trained
with variable window sizes and shuffled input orderings, similar to RankZephyr,
to handle reranking a variable number of passages and passages provided in a
random order. Of the 20K queries, 1.25K were set aside as a dev set, and models
were evaluated after each epoch, to select the model with the lowest dev set loss.

When ranking passages, we observed that ordering the most relevant passages
at the top is more critical than ordering less relevant ones further down. To
capture this intuition, we applied a weighted cross-entropy loss function with
exponential decay (0.95 weight per subsequent token), ensuring a higher focus
on top-ranking passages while effectively handling up to 100 passages.

We adopted hyperparameters similar to FiD work [8], as these proved effec-
tive, using a batch size of 64, a 10% dropout, and the AdamW optimizer with a
5e-5 learning rate and 100-step linear warmup. For MS MARCO passage rerank-
ing, we limited the combined length of the query and passage to 150 tokens using
the T5 SentencePiece tokenizer. For BEIR dataset reranking, the token limit was
increased to 512 to accommodate longer queries and passages. Training the Li-
T5base, LiT5large, and LiT5XL models on 8 TPU-v4 cores took approximately 53,
53, and 80 h, respectively. All model evaluations were performed on an NVIDIA
RTX A6000 GPU, post-conversion to a PyTorch checkpoint.

Model Initialization. To avoid data contamination, we initialized our models
with the T5 1.1 LM-Adapted weights [17], rather than the FLAN-T5 weights [1],
since the FLAN mixture includes both the MS MARCO QA task, as previously
noted [14] and some BEIR datasets. We initialized the LiT5 models in three
sizes (base, large, and XL) to explore model effectiveness across different scales,
resulting in the LiT5base, LiT5large, and LiT5XL variants.
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4 Results

For evaluation, we focused on MS MARCO passage reranking. We evaluate using
the TREC Deep Learning Tracks from 2019 to 2022 [2–5] (referred to as DL19–
DL22). In addition, we also test using the BEIR collection [20], which spans a
variety of diverse text retrieval tasks and domains.

Table 1. nDCG@10 on DL19–DL22. Each reranker reranks top-100 BM25 or
SPLADE++ED passages. Best scores are in bold, and the best scores with BM25
are underlined. A † indicates a significant difference from LiT5XL reranking BM25 or
SPLADE++ED, based on a one-sided, one-sample t-test (p <0.05, Holm-Bonferroni
corrected).

Model Params Source Prev. MSv1 MSv2
DL19 DL20 DL21 DL22

(1a) BM25 – None 0.506† 0.480† 0.446† 0.269†
(2a) SPLADE++ED 110M None 0.731 0.720† 0.684 0.570†

(3a) MonoT5 [16] 220M BM25 0.715 0.670 – –
(3b) MonoT5 [16] 3B BM25 0.718 0.689 – –
(4a) RankT5 [16] 3B BM25 0.712 0.695 – –
(5a) RankVicuna 7B BM25 0.668 0.655 0.624† 0.430†
(5b) RankVicuna 7B SPLADE++ED 0.746 0.747 0.701 0.582†
(6a) RankZephyr 7B BM25 0.742 0.709 0.703 0.515
(6b) RankZephyr 7B SPLADE++ED 0.782 0.816 0.760 0.669

(7a) RankGPT3.5 [15] ? BM25 0.686 0.620† 0.605† 0.418†
(8a) RankGPT4 [15] ? BM25 0.750 0.704 0.707 0.508
(8b) RankGPT4 [15] ? SPLADE++ED 0.746 0.708† 0.772 0.718

(9a) LiT5base 220M BM25 0.717 0.667 0.645 0.484
(9b) LiT5base 220M SPLADE++ED 0.783 0.751 0.693 0.626†
(9c) LiT5large 770M BM25 0.733 0.698 0.679 0.512
(9d) LiT5large 770M SPLADE++ED 0.800 0.766 0.728 0.686
(9e) LiT5XL 3B BM25 0.730 0.737 0.703 0.512
(9f) LiT5XL 3B SPLADE++ED 0.785 0.804 0.747 0.696

4.1 Effectiveness

LiT5 demonstrates effective listwise reranking capabilities across all model
sizes, competing with and sometimes surpassing current state-of-the-art models.
We examine nDCG@10 scores for reranking the top-100 documents returned
by first-stage retrieval using either BM25 or SPLADE++ EnsembleDistil
(SPLADE++ED) [6]. BM25 provides a common baseline, while SPLADE++ED
serves as a stronger supervised first-stage method.
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MS MARCO. In Table 1, we examine the reranking of MS MARCO passages
across DL19–DL22 test collections. We observe that LiT5’s reranking effective-
ness improves with model size. LiT5base has the lowest scores for DL19-DL22,
while LiT5XL generally scores highest, though LiT5large slightly edges out Li-
T5XL on DL19.

Comparisons to Supervised T5-Based Methods. Both MonoT5 [12] and
RankT5 [21] are pointwise rerankers trained on the MS MARCO v1 training set.
LiT5large (770M parameters) and LiT5XL (3B parameters) outperform both 3B
parameter MonoT5 and RankT5 models across datasets, shown in rows 3 and 4
vs 9(c, e).

Comparisons to Listwise Rerankers. LiT5 outperforms both RankGPT3.5 and
RankVicuna, which is distilled from RankGPT3.5. This advantage holds even for
smaller LiT5 models, due to their effective distillation from RankZephyr, a model
trained with RankGPT4 as a teacher. LiT5 is also competitive with RankGPT4

and RankZephyr. The scores are very close, with neither model scoring signifi-
cantly higher than LiT5XL (p < 0.05) in any collection.

LiT5XL is able to score higher than RankZephyr and RankGPT4 in many
cases. With BM25 retrieval, LiT5XL excels over RankGPT4 in DL20 and DL22,
shown in row 8(a), and over RankZephyr in DL20, shown in row 6(a). With
SPLADE++ED first-stage retrieval, LiT5large and LiT5XL have stronger rerank-
ing effectiveness than RankZephyr on DL19 and DL22, shown in rows 9(d,f)
vs 6(b). All LiT5 models have stronger reranking effectiveness on DL19 and
DL20 than RankGPT4. Nonetheless, all LiT5 models have weaker effectiveness
on DL21 and DL22 than RankGPT4. Interestingly, the same is true for Rank-
Zephyr, which outperforms RankGPT4 on both DL19 and DL20, but it under-
performs RankGPT4 on DL21 and DL22. This may be a result of RankZephyr
being trained to rerank MS MARCO v1 passages only.

Considering SPLADE++ED retrieval, LiT5large achieves the highest ranking
effectiveness score on DL19, RankZephyr has the strongest reranking effective-
ness on DL20, and RankGPT4 has the highest scores on DL21 and DL22. These
best scores are bolded in the table. Considering BM25 first-stage retrieval, we
underline the highest scores. LiT5XL achieves the strongest reranking effective-
ness on DL20, RankZephyr achieves the highest scores on DL22, and RankGPT4

scores strongest on DL19 and DL21. Our methods along with RankZephyr and
RankGPT4 often trade places in attaining the highest reranking effectiveness
scores. We have shown that even though RankGPT4 and RankZephyr are much
larger than the LiT5 models in parameters, our results indicate that LiT5 can
achieve reranking effectiveness that rivals that of RankGPT4 and RankZephyr.

BEIR. For BEIR test collections, we examine reranking the top 100 passages
retrieved using BM25 retrieval in Table 2. The table shows the average nDCG@10
score for reranking on all BEIR datasets, with the exception of CQADupStack
for simplicity. We observe that reranking with LiT5 improves nDCG@10 scores
compared to BM25 scores, suggesting that the LiT5 models generalize well. The
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Table 2. Average nDCG@10 score for reranking the top 100 passages returned by
BM25 on all BEIR datasets, with the exception of CQADupStack for simplicity. The
listed numbers underneath the models (220M, 770M...) indicate the parameter counts
for LiT5 and RankZephyr.

BM25 LiT5 RankZephyr
Dataset – 220M 770M 3B 7B

TREC-COVID 59.5 79.5 82.1 81.8 85.6
BioASQ 52.3 55.2 57.4 58.2 55.6

NFCorpus 32.2 34.2 34.9 36.1 32.2
NQ 30.6 52.9 56.1 57.7 56.9

HotpotQA 63.3 68.8 72.0 73.8 72.1
FiQA 23.6 36.5 40.0 41.7 38.7

Signal-1M 33.0 31.5 32.2 32.0 31.5
TREC-NEWS 39.5 48.0 49.9 49.4 52.2

Robust04 40.7 52.7 56.5 55.4 54.7
Arguana 39.7 29.7 35.2 39.2 42.7

Touche-2020 44.2 32.8 34.1 34.4 32.9
Quora 78.9 80.7 84.7 85.4 80.6

DBPedia 31.8 40.7 43.6 44.7 44.6
SCIDOCS 14.9 16.4 18.8 19.3 19.3
FEVER 65.1 77.6 78.1 81.6 77.1

Climate-FEVER 16.5 22.0 21.9 22.9 23.5
SciFact 67.9 72.4 74.1 74.9 76.0
Average 43.2 48.9 51.3 52.3 51.5

tables show that as our models are scaled up in parameters, the average scores
improve. LiT5XL typically delivers the strongest results among all our models.
We also evaluate RankZephyr on BEIR datasets ourselves using vLLM [10]. We
see that LiT5XL attains a higher average score compared to RankZephyr. This
is despite LiT5 being trained with RankZephyr as the teacher. We suspect that
RankZephyr likely suffers in BEIR reranking due to its limited context window,
forcing passages to be cut off.

4.2 Model Efficiency

LiT5 is designed with fewer parameters and higher computational efficiency than
RankVicuna and RankZephyr. By encoding passages separately and decoding
over their concatenated representations, LiT5 achieves linear computation scal-
ing with the number of passages, unlike the quadratic scaling discussed in Sect. 2.
Our model variants, initialized with T5 models of different sizes, balance com-
putational cost with reranking effectiveness.
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Fig. 2. Average nDCG@10 across DL collections weighted by the number of queries for
the LiT5 model variants vs. RankZephyr, comparing reranking of the top 100 BM25
passages by average FLOPs per query (left) and model parameters (right).

RankZephyr and RankGPT also make use of a sliding window approach for
reranking, handling only 20 passages at a time. This means that these models
would have to repeatedly consider some passages in the sliding window pass
to rerank 100 passages. It is also worth mentioning that Pradeep et al., have
shown that performing up to three sliding window passes generally results in
slightly better final effectiveness for reranking 100 passages [14]. However, this is
at the cost of even more computation, making these methods even more costly
in comparison to LiT5.

In Fig. 2, we present average nDCG@10 scores across DL19-22 for LiT5 and
RankZephyr as a function of average FLOPs and model parameters. Both mod-
els benefit from KV caching [13], significantly reducing FLOPs. The triangular
points depict RankZephyr’s efficiency/effectiveness, showing that LiT5 models
have fewer parameters and require fewer FLOPs than RankZephyr. Although
RankZephyr has 2.6× the parameters of LiT5XL, it needs 7.4× the FLOPs for
reranking. This demonstrates LiT5’s superior parameter efficiency, with LiT5XL

also achieving a higher weighted average nDCG@10 score, indicating a much
better efficiency-effectiveness trade-off than RankZephyr.

5 Conclusion and Future Work

We introduce LiT5, a family of efficient listwise rerankers, demonstrating that
strong reranking effectiveness from models like RankZephyr can be distilled
into smaller, computationally efficient encoder–decoder models. LiT5 enables
the reranking of up to 100 passages in a single shot, surpassing prior context-
window limitations. Our largest LiT5 model, LiT5XL, in some cases, scores higher
than the current state-of-the-art listwise rerankers RankGPT4 and RankZephyr,
despite having much fewer parameters, greater computational efficiency, and
building on the outdated T5 model.

LiT5 also shows stronger effectiveness than supervised methods trained with
human-annotated relevance labels using the same T5 models. We test models
ranging from 220M to 3B parameters, showing that a small 220M parameter
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model can still excel at listwise reranking, all while generalizing well to out-of-
domain reranking tasks and running efficiently.

The findings from this work have some interesting applications for future
work. We show that we can successfully distill reranking effectiveness from
RankZephyr to much smaller encoder-decoder models with the added benefits of
greater computational efficiency and being able to rerank 100 passages at once
instead of only 20. As listwise rerankers advance, these effective teachers can
be distilled into compact LiT5 models, offering scalable, efficient alternatives
capable of reranking more passages at once in a listwise manner.
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