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Abstract. One of the contributions of the landmark Dense Passage
Retriever (DPR) work is the curation of a corpus of passages generated
from Wikipedia articles that have been segmented into non-overlapping
passages of 100 words. This corpus has served as the standard source
for question answering systems based on a retriever–reader pipeline
and provides the basis for nearly all state-of-the-art results on popular
open-domain question answering datasets. There are, however, multiple
potential drawbacks to this corpus. First, the passages do not include
tables, infoboxes, and lists. Second, the choice to split articles into non-
overlapping passages results in fragmented sentences and disjoint pas-
sages that models might find hard to reason over. In this work, we exper-
imented with multiple corpus variants from the same Wikipedia source,
differing in passage size, overlapping passages, and the inclusion of lin-
earized semi-structured data. The main contribution of our work is the
replication of Dense Passage Retriever and Fusion-in-Decoder training
on our corpus variants, allowing us to validate many of the findings in
previous work and giving us new insights into the importance of corpus
pre-processing for open-domain question answering. With better data
preparation, we see improvements of over one point on both the Natural
Questions dataset and the TriviaQA dataset in end-to-end effectiveness
over previous work measured using the exact match score. Our results
demonstrate the importance of careful corpus curation and provide the
basis for future work.
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1 Introduction

Dense Passage Retriever (DPR) [10] has been a pivotal work for open-domain
question answering (QA). One of its contributions was the curation of a corpus
of passages formed from a Wikipedia XML dump dated December 20, 2018.
The authors split articles from this dump into non-overlapping passages, each
100 words long. The corpus, herein referred to as WikiText(100w), served as the
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textual knowledge source to allow the DPR retriever–reader pipeline to perform
question answering. The corpus continues to be used in subsequent work, and
improved retriever and reader models based on it have achieved state-of-the-art
results on multiple open-domain QA datasets [7,8,16]. Given such community-
wide adoption as the “gold standard” corpus, it is worth questioning if (and how)
pre-processing choices affect the trained models.

There indeed seems to be multiple potential drawbacks to how the DPR
authors pre-processed the original Wikipedia dump to form the WikiText(100w)
corpus. For one, semi-structured data such as tables, infoboxes, and lists were
not included in the final passage texts. The corpus contains only unstructured
text from the body of the Wikipedia articles. Additionally, splitting the articles
into disjoint 100-word passages results in fragmented sentences since the start
or end of the passages do not necessarily align with complete sentences. Finally,
the choice of disjoint passages (as opposed to overlapping passages) means that
some textual information in individual passages may be isolated from associated
relevant information that could be useful to provide a more complete context for
question answering.

Using Wikipedia as a knowledge source in a retriever–reader pipeline has
been explored earlier by Chen et al. [3]. Karpukhin et al. [10] used some of
the same pre-processing code, leveraging the WikiExtractor Python library to
extract cleaned text from Wikipedia articles. In our efforts, we first tried to
closely replicate the corpus preparation steps from the DPR paper. For a fair
comparison, we started with the same Wikipedia XML dump (from December 20,
2018) used in Karpukhin et al. [10] and we used some of the same pre-processing
code. Specifically, we also used the WikiExtractor library, modifying the code
to keep lists in the final cleaned text, and we used the pre-processing code from
Chen et al. [3] to filter out disambiguation pages and HTML characters from
the Wikipedia dump. We included additional pre-processing steps to add tables,
infoboxes, and lists to our corpora and discarded unwanted leftover characters
from the XML dump.

In this work, we experimented with Wikipedia corpus variants differing
in passage size, overlapping passages, and the inclusion of linearized tables,
infoboxes, and lists. One should note that the community has explored the inclu-
sion of tables, infoboxes, and lists from Wikipedia in a text corpus with some
success in Oğuz et al. [16], where they extracted Wikipedia tables and infoboxes
exclusively from the Natural Questions dataset [11]. Here, we instead extracted
the semi-structured data directly from the full Wikipedia XML dump to pro-
vide passages that are richer and contain more information. We used existing
techniques to train reader and retriever models to answer questions from pop-
ular QA datasets. In particular, we started with training DPR models [10] for
each corpus variant. We then trained generative Fusion-in-Decoder (FiD) reader
models [8] to complete a retriever–reader pipeline.

The main contribution of this work is the replication of DPR and FiD training
on our Wikipedia corpus variants. We are able to confirm many of the findings
based on the original WikiText(100w) corpus, thereby adding veracity to previous
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results. Furthermore, we are able to increase the effectiveness of end-to-end QA
using our corpus variants, highlighting the importance of corpus curation and
providing a foundation for further advances.

We make our corpora and trained retriever and reader models available in
HuggingFace.1 We make our pre-processing code and retrieval code available
in the Pyserini toolkit.2 Our answer extraction code and end-to-end evaluation
instructions are provided through the PyGaggle toolkit.3

2 Corpus Preparation

2.1 Sliding Window Segmentation

To split Wikipedia articles into passages that we feed to the retriever and reader
models, we considered the use of sliding-window segmentation on a sentence level
instead of splitting articles into disjoint passages of 100 words, as in the original
DPR paper. Sentence-based segmentation has seen success in prior retrieval work
that deals with long documents [15,17,18], and has the advantage of generating
passages with natural discourse segments.

Given a Wikipedia article with any number of sentences, we employ passage
size a and stride b, where 0 < b ≤ a. As a result of this segmentation, the first
passage would contain the first a sentences, the second passage would start at
sentence b + 1 and include the following a sentences, the third passage would
start at sentence 2b+1 and contain the following a sentences, and so on. In our
experiments, we considered two (a, b) configurations, (6, 3) and (8, 4), primarily
to keep the passage lengths comparable to the WikiText(100w) corpus. We also
prepended each passage with the title of the Wikipedia article to provide some
global context.

2.2 Parsing Semi-structured Data

Tables. Our goal here was to convert tables from a semi-structured format into
a more linear textual form amenable to downstream readers. We also wanted
the linearization to be compatible with the segmentation from Sect. 2.1 since
they were likely to be interwoven with “normal” text. Hence, rows from tables
were converted into a sentence-like form with the help of table headers. We began
with the corresponding column header followed by a colon, then the cell’s textual
content followed by a comma, and then this process was repeated for each cell in
the row. After each row’s final cell, we ended with a period. Therefore, each row
formed a “sentence”. Standard segmentation choices discussed in Sect. 2.1 were
applied to these linearized tables also.

It is worth noting that not every table in Wikipedia has a “standard format”,
where the first row holds column headers and the other rows hold cell values
1 https://huggingface.co/castorini/.
2 http://pyserini.io/.
3 http://pygaggle.ai/.

https://huggingface.co/castorini/
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corresponding to those column headers. Some tables, which are not represen-
tative of every exception, do not have column headers and instead only have
row headers. Nonetheless, our heuristic of the first row being column headers
and the remaining rows having values corresponding to the column headers was
adequate to linearize most tables successfully.

Name: Gordon | Agnew , Relationship: Professor, Discipline: Cryptography, Known for:
Professor , Notes: , .
Name: George Alfred | Barnard , Relationship: Lecturer, Discipline: Mathematics,
Known for: Statistics and quality control , Notes: , .
Name: Walter | Benz , Relationship: Professor, Discipline: Mathematics, Known for:
Geometer, Notes: , .

Fig. 1. Example of a portion of a Wikipedia table (above) and our linearization into
sentences (below). Note that the Wikipedia markup does not always align with the
visual rendering.

Figure 1 shows an example of how we represent tables as sentences. Given
that we include the article title, the table is represented in an easy-to-consume
form for both retriever and reader models to reason over, without diverging too
much from the standard textual nature of “normal” passages.

Infoboxes. In Wikipedia, infoboxes are table-like content elements that usually
appear at the top-right of certain articles summarizing key information about
them. The XML dump presents them as labels and their corresponding data. To
convert these infoboxes to passages in our corpus, much like tables, we phrased
them as labels, followed by a colon, and then the corresponding data. All lin-
earized label–data pairs were then terminated with a period. Standard segmenta-
tion choices discussed in Sect. 2.1 were also applied to infoboxes. Figure 2 shows
an example; we can see that the textual form captures all the key information
from the infobox.

Lists. For Wikipedia lists, we treated each list element as a separate sentence.
Standard segmentation choices discussed above were also applied. Figure 3 pro-
vides an example. Given that we include the title in every passage, models can
easily reason over the provided list information.

2.3 Corpus Variants and Statistics

The culmination of all these pre-processing steps and design choices was a set
of Wikipedia corpus variants. While we are aware of the many combinations
that can be studied, we limited ourselves to five variants that we believed were
particularly worth exploring in detail, as follows:
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birth date: Birth date and age | 1952 | 5 | 30 .
birth place: Philadelphia, Pennsylvania , U.S..
nationality: United States | American .
field: artists’ books , typography , visual poetry , letterpress , digital humanities .
training: California College of Arts and Crafts , University of California, Berkeley.

Fig. 2. Example of a portion of a Wikipedia infobox (above) and our linearization into
sentences (below).

"cairn", rhymes with "bairn", a Northern English and Scottish word meaning child.
"chaos" , rhymes with "naos", the inner chamber of a temple.
"circle" , rhymes with "hurkle," to pull in all one’s limbs.

Fig. 3. Example of a portion of a Wikipedia list (above) and our linearization into
sentences (below).
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Table 1. Statistics of different Wikipedia corpus variants used in this study.

Corpus # Articles # Passages Avg. Len (words)

(1) WikiText(100w) 3.2 M 21.0 M 100

(2) WikiText(100w)* 5.6 M 24.0 M 95

(3) WikiText(6, 3) 5.6 M 34.0 M 109

(4) WikiAll(6, 3) 6.1 M 76.7 M 80

(5) WikiText(8, 4) 5.6 M 25.6 M 141

(6) WikiAll(8, 4) 6.1 M 57.1 M 106

– WikiText(6, 3) is a corpus without tables, infoboxes, and lists with a passage
size of 6 sentences and a stride of 3 sentences.

– WikiText(8, 4) is similar to above, but with a passage size of 8 sentences and
a stride of 4 sentences.

– WikiAll(6, 3) and WikiAll(8, 4) correspond to the two previous corpora, but
with the inclusion of tables, infoboxes, and lists.

– The final corpus, WikiText(100w)*, was our attempt to replicate the
WikiText(100w) corpus. Matching WikiText(100w), We used spaCy’s
en_core_web_lg tokenizer to count 100 words ignoring whitespace and punc-
tuation tokens. Additionally, matching WikiText(100w), we augmented the
passages at the end of articles that contained fewer than 100 words by loop-
ing back to the beginning of the article.

We performed a statistical analysis of our five different corpus variants in
comparison to the original corpus; results are shown in Table 1. Comparing rows
(1) and (2), we see that our replication of the WikiText(100w) corpus, referred
to as WikiText(100w)*, has many more articles, a larger passage count, but the
passages are (slightly) shorter than the original. This discrepancy appears to be
due to articles with fewer than 100 words not being included in WikiText(100w).
We argue that this choice was arbitrary as many articles were left out, and
we instead elected to include these articles. Otherwise, we attempted to make
WikiText(100w)* as close as possible to WikiText(100w).

Another noteworthy observation is that the corpus variants with tables,
infoboxes, and lists, rows (4) and (6), have many more articles, but fewer average
words per passage compared to their counterparts without the semi-structured
data, rows (3) and (5). This was due to the added sentences being shorter in
length, on average, compared to those from the bodies of the articles in the
text-only variants.

As expected, the corpora with a passage size of 8 sentences, rows (5) and (6),
have longer passages than their counterparts with a passage size of 6 sentences,
rows (3) and (4). Naturally, the variants with longer passages have fewer passages
overall.
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3 Experimental Design

Our experiments adopted the standard retriever–reader architecture for open-
domain question answering. We evaluated retrieval effectiveness on the same
five datasets as Karpukhin et al. [10]: the open-domain version of Natural Ques-
tions (NQ) [11,12], the open-domain version of TriviaQA [9], WebQuestions [2],
CuratedTREC [1], and SQuAD [20]. For end-to-end effectiveness, we followed
Izacard and Grave [8] and only performed evaluations on the Natural Questions
and the TriviaQA datasets.

3.1 Retriever Model

For each corpus variant, DPR models were trained on Google’s TPU v3–8 using
the Tevatron toolkit [6], with the same hyperparameters as those from Karpukhin
et al. [10]. We fine-tuned the uncased variant of BERT-base with a batch size
of 128 for 40 epochs, using a dropout rate of 10%, the ADAM optimizer with
a learning rate of 10−5, and linear scheduling with warm-up steps. We limited
the question and passage lengths to 32 and 256 tokens, respectively, using the
WordPiece tokenizer of BERT [5]. We considered two settings in terms of labeled
data: first, only NQ; second, a multi-dataset approach that combined training
data from NQ, TriviaQA, WebQuestions, and CuratedTREC.

One challenge we faced was the selection of positive and negative passages
for fine-tuning the retrieval models. The original DPR paper implemented two
methods: For NQ and SQuAD, each question has a corresponding span of text in
Wikipedia from which the original annotators identified the answer. This span of
text maps to a passage in WikiText(100w). These passages are referred to as “gold
passages” and form the positive examples for each question to train the DPR
model. Karpukhin et al. [10] prepared negative passages by first using BM25 for
retrieval and then filtering out the positives. The authors considered these “hard
negatives” because although the passages rank highly in terms of BM25 scores,
they do not contain answers to the questions.

Instead of using the gold passages as the positive examples, positive passages
can be selected using distant supervision. For the TREC, WebQuestions, and
TriviaQA datasets, since there are no gold passages from Wikipedia, the highest-
ranked passage from BM25 that contains the answer (where the search query is
the concatenation of the question and the answer) is used as the single positive
passage for training. Karpukhin et al. [10] prepared negative passages the same
way as when gold passages are used.

To avoid matching answer spans with gold passages for each corpus, we
adopted a distant supervision approach when preparing the training set for each
QA dataset. In our case, the Pyserini IR toolkit [13] was used to perform BM25
retrieval using the parameters k1 = 0.9 and b = 0.4.

After training a DPR model for each corpus, we then performed a second
iteration of DPR training, inspired by Xiong et al. [21] and Oğuz et al. [16].
Again, with distant supervision, but instead of using BM25, we leveraged the
already-trained DPR model to retrieve 100 passages for each query, and those
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that did not contain the answer were selected as the negative passages. The
top-ranked passage that contained the answer was selected as the single positive
passage. Using these positive and negative passages, we trained a new DPR
model from scratch to obtain the second iteration DPR model.

In all these experiments, we performed dense retrieval with the Tevatron
toolkit [6] and evaluated retrieval effectiveness in Pyserini [13] using the top-k
accuracy metric.

3.2 Reader Model

For each corpus, we trained a FiD reader model [8] with T5-Large [19] using code
made available by the authors. Hyperparameters were chosen to be consistent
with Izacard and Grave [8] when computationally possible. Specifically, we used
a batch size of 64, a dropout rate of 10%, and an ADAMW optimizer with a peak
learning rate of 5×10−5. The length of the concatenation of the question and the
passage was limited to 250 tokens using the SentencePiece tokenizer of T5 [19].
Given hardware restrictions, we trained the models using 4× A100 40GB GPUs
with gradient accumulation to achieve a batch size of 64. Model training was
performed in mixed precision using the bfloat16 datatype for computational
efficiency. We trained the model with 10K gradient steps, which we found to be
adequate, and selected the best model based on the exact match score on the
validation set.

A FiD reader model was trained separately on the Natural Questions dataset
and the TriviaQA dataset. On NQ, the target answer was sampled randomly
from the list of answers. However, for training on TriviaQA, the unique human-
generated answer was used as the target (after normalization by capitalizing the
first letter of every word and leaving everything else as lowercase).

4 Results

4.1 Retrieval Results

We begin with a focus on the Natural Questions (NQ) dataset. Table 2 explores
the retrieval effectiveness of DPR models trained on NQ with the different cor-
pora discussed. Broadly, they are divided into DPR leveraging gold passages,
DPR leveraging distant supervision, and DPR leveraging both distant supervi-
sion and a second round of fine-tuning.

Karpukhin et al. [10] stated that choosing positive passages using distant
supervision instead of using the gold passages results in only a minor decrease
in top-k accuracy for retrieval; see rows (1a) and (2f) in Table 2. We observe
in row (2e) that training a DPR model on our WikiText(100w)* corpus using
distantly supervised passages achieves similar top-100 effectiveness but lower
top-20 effectiveness compared to WikiText(100w), row (2f). Nonetheless, using
distantly supervised passages is promising and we explored other variants with
this setting.
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Table 2. Retrieval effectiveness comparing the use of distant supervision vs. gold
passages for selecting training data, choice of segmentation, and inclusion of semi-
structured data on the Natural Questions dataset.

Method NQ-Dev NQ-Test
top20 top100 top20 top100

DPR 1st round—Gold Passages
(1a) WikiText(100w) [10] 78.1 85.0 78.4 85.4
DPR 1st round—Distantly Supervised Passages
(2a) WikiText(6, 3) 75.9 85.0 77.0 86.5
(2b) WikiAll(6, 3) 78.1 88.2 79.3 89.1
(2c) WikiText(8, 4) 75.8 85.1 77.6 86.9
(2d) WikiAll(8, 4) 79.7 88.7 81.1 90.0
(2e) WikiText(100w)* 75.1 84.5 76.6 85.4
(2f) WikiText(100w) [10] 77.1 84.4
DPR 2nd round—Distantly Supervised Passages
(3a) WikiText(6, 3) 80.8 87.3 81.6 88.5
(3b) WikiAll(6, 3) 84.7 90.9 85.2 92.3
(3c) WikiText(8, 4) 81.0 87.3 82.5 89.2
(3d) WikiAll(8, 4) 85.2 91.2 86.4 92.4
(3e) WikiText(100w)* 79.6 87.1 81.2 87.8

When we trained a DPR model for the second iteration with positive and neg-
ative passages chosen using the first iteration DPR model, we observe that top-k
retrieval accuracy results were higher on our WikiText(100w)* corpus than the
results from both the gold and the distant supervision settings from Karpukhin
et al. [10], row 3(e) vs. rows (1a) and (2f). The reason could be that better
hard negatives from the first iteration DPR model (compared to BM25 hard
negatives) produce a more effective final model.

Turning our attention to all the open-domain QA datasets in our study,
Table 3 shows retrieval effectiveness using a DPR model trained on the amalga-
mation of the NQ, TriviaQA, WQ, and CuratedTREC datasets. The table begins
with results across the corpus variants from BM25, standard DPR (DPR1), and
the hybrid of BM25 and DPR1 retrieval, rows 1(a)–3(e). In the hybrid condi-
tions, the passages are retrieved using reciprocal rank fusion (RRF) between
the rankings from the DPR model and BM25. Then we have results from the
two-round refined DPR (DPR2) and the hybrid of BM25 and DPR2 retrieval,
rows 4(a)–5(e).

Except for the SQuAD dataset, the DPR models achieve higher top-k accu-
racy scores than BM25 retrieval, shown in rows 1(a)–(f) vs. rows 2(a)–(f) and
4(a)–(e). This observation is consistent with results from previous work [10,14].
Across the board, the second iteration DPR model seems to outperform the first
iteration DPR model, shown in rows 2(a)–(e) vs. rows 4(a)–(e) of this table and
rows 2(a)–(e) vs. rows 3(a)–(e) in Table 2. This finding confirms the importance
of selecting negatives when fine-tuning DPR (and related) models.
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Table 3. Retrieval effectiveness comparing the different corpora across the NQ, Triv-
iaQA, WQ, CuratedTREC, and SQuAD datasets. We trained the DPR models on a
combination of the NQ, TriviaQA, WQ, and CuratedTREC datasets.

Method NQ TriviaQA WQ Curated SQuAD
top20 top100 top20 top100 top20 top100 top20 top100 top20 top100

BM25
(1a) WikiText(6, 3) 64.3 78.9 77.5 84.2 62.8 76.5 81.4 91.2 74.1 84.4
(1b) WikiAll(6, 3) 66.7 81.7 78.3 84.8 64.0 78.7 80.6 91.4 72.7 83.3
(1c) WikiText(8, 4) 66.7 79.6 78.6 84.7 65.2 78.2 82.7 92.2 74.8 85.0
(1d) WikiAll(8, 4) 69.6 82.9 79.5 85.5 66.1 80.2 82.7 92.1 73.5 84.1
(1e) WikiText(100w)* 63.8 78.0 76.3 83.4 61.2 75.4 80.3 90.8 70.4 81.4
(1f) WikiText(100w) [14] 62.9 78.3 76.4 83.2 62.4 75.5 80.7 89.9 71.1 81.8
DPR1

(2a) WikiText(6, 3) 76.4 85.8 77.9 85.0 70.8 81.2 85.7 92.9 53.6 69.6
(2b) WikiAll(6, 3) 78.7 89.0 78.3 85.6 73.1 82.0 88.5 94.4 53.2 68.5
(2c) WikiText(8, 4) 76.9 86.3 78.5 85.4 71.8 81.3 88.0 94.7 55.1 70.7
(2d) WikiAll(8, 4) 80.4 89.8 79.0 85.7 74.1 83.1 87.9 94.0 54.4 70.2
(2e) WikiText(100w)* 75.4 85.1 78.0 84.8 70.1 80.9 88.2 94.1 50.5 67.2
(2f) WikiText(100w) [14] 79.4 87.0 78.5 84.5 75.3 83.0 88.2 94.4 58.3 72.4
RRF (DPR1, BM25)

(3a) WikiText(6, 3) 79.6 87.9 82.9 87.0 76.1 83.9 89.5 94.5 76.8 85.8
(3b) WikiAll(6, 3) 83.3 91.3 83.8 87.8 77.1 85.8 92.2 95.2 75.6 85.1
(3c) WikiText(8, 4) 81.2 88.3 83.5 87.6 75.6 84.5 91.1 95.7 77.1 86.0
(3d) WikiAll(8, 4) 84.7 91.9 84.2 88.1 78.7 85.8 91.5 95.1 76.0 85.8
(3e) WikiText(100w)* 79.6 87.8 82.4 87.0 73.8 83.5 90.1 94.7 73.3 83.1
DPR2

(4a) WikiText(6, 3) 81.1 88.3 81.2 86.2 76.5 84.2 90.3 94.2 60.6 75.3
(4b) WikiAll(6, 3) 85.5 91.8 81.9 87.0 80.1 87.4 91.9 95.8 60.8 75.0
(4c) WikiText(8, 4) 82.2 88.6 81.1 86.4 77.8 85.3 91.6 95.2 60.3 74.5
(4d) WikiAll(8, 4) 85.9 92.7 82.4 87.4 80.2 86.8 90.6 95.4 61.1 74.8
(4e) WikiText(100w)* 80.0 88.1 80.2 85.8 75.0 84.0 91.3 95.1 57.7 72.7
RRF (DPR2, BM25)

(5a) WikiText(6, 3) 81.6 89.2 83.3 87.4 77.4 84.7 91.6 95.4 77.9 86.5
(5b) WikiAll(6, 3) 85.3 93.0 84.2 88.0 80.3 87.5 91.5 96.4 76.9 85.9
(5c) WikiText(8, 4) 82.6 89.2 84.0 87.7 77.9 85.2 91.9 95.1 78.1 86.7
(5d) WikiAll(8, 4) 86.0 93.2 84.6 88.5 80.5 87.5 91.5 95.8 77.5 86.4
(5e) WikiText(100w)* 81.2 88.9 82.5 87.1 76.0 84.4 91.2 94.7 74.4 84.1

Also, much like in Ma et al. [14], retrieval accuracy seems to benefit from
hybrid retrieval. Reciprocal rank fusion [4] between DPR ranked lists and BM25
ranked lists tend to achieve higher top-k accuracy scores than either ranking
method alone, shown in rows 1(a)–(e), 2(a)–(e) vs. rows 3(a)–(e) and rows 1(a)–
(e), 4(a)–(e) vs. rows 5(a)–(e).

Between the corpus variants we considered, retrieval on those with the addi-
tion of tables, infoboxes, and lists, WikiAll(6, 3) and WikiAll(8, 4), generally
results in higher retrieval accuracy, shown in rows (∗a) vs. (∗b) and rows (∗c)
vs. (∗d), in both Tables 2 and 3. This observation is consistent in all except
for the CuratedTREC and the SQuAD datasets. Nonetheless, including these
semi-structured data provides value.

Furthermore, retrieval accuracy is usually higher with WikiAll(8, 4) compared
to WikiAll(6, 3), perhaps because of the longer passages, shown in rows (*d) vs.
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Table 4. End-to-end QA effectiveness in terms of the exact match score. In the “DPR
Ranking” condition, the passages are retrieved using the second iteration DPR model.
In the “Hybrid Retrieval” condition, retrieval applied Reciprocal Rank Fusion between
the rankings from the second iteration DPR model and BM25 retrieval.

Condition NQ TriviaQA
Dev Test Dev Test

DPR ranking
(1a) WikiText(6, 3) 51.0 52.4 70.6 70.7
(1b) WikiText(8, 4) 51.3 53.2 70.2 70.3
(1c) WikiAll(6, 3) 54.3 54.8 71.8 71.8
(1d) WikiAll(8, 4) 54.0 55.0 71.1 72.3
(1e) WikiText(100w)* 50.4 51.1 70.4 70.4
Hybrid ranking
(2a) WikiText(6, 3) 53.0 72.9
(2b) WikiText(8, 4) 53.3 72.5
(2c) WikiAll(6, 3) 55.8 73.7
(2d) WikiAll(8, 4) 55.7 73.1
(2e) WikiText(100w)* 51.4 72.5

(*b). Similarly, retrieval accuracy is usually higher with WikiText(8, 4) over Wiki-
Text(6, 3), again perhaps because of the difference in average passage lengths,
shown in rows (*c) vs. (*a). Retrieval accuracy tends to be the lowest on the
WikiText(100w)* corpus, shown in rows (∗a, ∗b, ∗c, ∗d) vs. (∗e). These obser-
vations are generally consistent in all datasets except for CuratedTREC, where
there are some exceptions.

4.2 Reader Results

Arguably, the more important measure to compare the different corpus variants
is end-to-end question answering effectiveness. Retrieval evaluation is insuffi-
cient, because scores may be higher simply due to some corpora having longer
passages. We evaluated end-to-end QA effectiveness in the PyGaggle toolkit
using the exact match score.

Of the different corpora studied, we observe in Table 4 that exact match
scores are highest in those with the inclusion of semi-structured data, seen in
rows (1c), (2c), (1d), (2d). Comparing rows (∗a), (∗b), and (∗e), we see that using
the text-only corpora, WikiText(6, 3) or WikiText(8, 4), results in an improvement
in terms of exact match scores over the WikiText(100w)* corpus for the Natural
Questions dataset, suggesting a potential superiority in segmenting articles as
discussed in Sect. 2.1. Nonetheless, results for the different corpus variants are
much closer on TriviaQA. It is crucial to note that answers for questions in the
Natural Questions dataset were sourced from Wikipedia, whereas the same does
not hold for TriviaQA, and such collection biases could be the reason for this
inconsistent finding.
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Table 5. Comparison to previous work for end-to-end QA effectiveness. Original results
reported for FiD [8], DKRR [7], and UniK-QA [16].

Condition NQ-test TriviaQA-test

(1) FiD (Original) [8] 51.4 67.6
(2) DKRR [7] 54.4 72.5
(3) UniK-QA [16] 54.1 65.1
(4) WikiAll(6, 3) 55.8 73.7

Comparing the passage size and stride configurations of (6, 3) vs (8, 4), seen
in rows (*a) vs (*b) and (*c) vs (*d), we see that results are often similar with
the configurations taking turns leading.

Retrieving passages using hybrid retrieval leads to improved exact match
scores, seen in rows 1(a)–(e) vs. 2(a)–(e). That is, hybrid retrieval improves not
just retrieval scores but end-to-end QA effectiveness as well.

Our best experimental setting, which uses hybrid retrieval on the WikiAll(6,
3) corpus followed by a FiD-large reader model [8] to extract the answer, achieves
improved effectiveness over comparable prior work also based on the FiD-large
reader model. Table 5 presents these comparisons. Our best experimental setting,
displayed in row (4), shows an improvement of over one point on both Natural
Questions and TriviaQA.

5 Conclusion

Our paper replicates and builds on a line of work that uses a retriever–
reader pipeline to process passages from the WikiText(100w) corpus to answer
open-domain questions. We more thoroughly examined various techniques and
strengthened findings from previous work.

We showed that not only does including tables, infoboxes, and lists in
the Wikipedia corpus improve retrieval effectiveness for the Natural Questions
dataset, a finding reported in Oğuz et al. [16], but that the addition clearly
improves scores for also the TriviaQA and the WQ datasets. We also demon-
strated that including linearized semi-structured data improves end-to-end effec-
tiveness for both of the datasets considered: Natural Questions and TriviaQA.
Splitting Wikipedia into passages in a fashion where we preserve complete sen-
tences and allow for overlapping passages also benefits both retrieval and end-
to-end effectiveness compared to the previous segmentation approach.

In terms of modeling, we find that training a DPR model for an additional
iteration improves retrieval accuracy for QA, confirming Oğuz et al. [16]. Finally,
following Ma et al. [14], we replicated the finding that hybrid retrieval offers bet-
ter effectiveness across these new corpora. As a result of all this careful study, we
have achieved the best scores that we know of for this class of models that lever-
ages a T5-large variant of a Fusion-in-Decoder reader model to answer questions
from the Natural Questions and TriviaQA datasets. Together, these improve-
ments demonstrate the importance of careful corpus preparation and thoroughly
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re-examining previous work to make sure that all design variants have been
explored.
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